

DATA SHEET

Product Name Radial Terminal Type Cement Fixed Resistors

Part Name PRTA Series File No. DIP-SP-038

Uniroyal Electronics Global Co., Ltd.

88 Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

1.0 Scope

This datasheet is the characteristics of Power Metal Fixed Resistors manufactured by UNI-ROYAL.

- 1.1 Compliant with RoHS directive.
- 1.2 Halogen free requirement.

2. Explanation of Part No. System

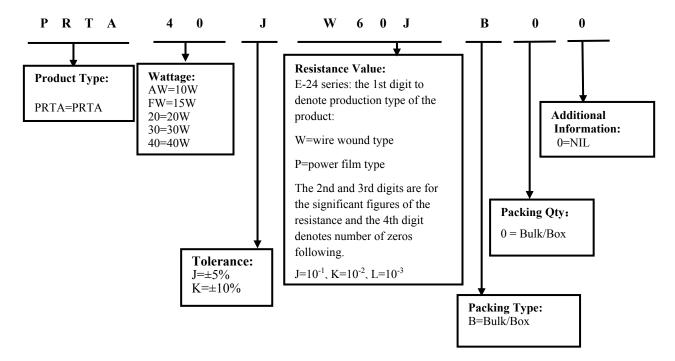
The standard Part No. includes 14 digits with the following explanation:

- 2.1 For Cement Fixed Resistors, these 4 digits are to indicate the product type but if the product type has only 3digits, the 4th digit will be "0" Example: PRTA=PRTA type
- $2.2 5^{th} \sim 6^{th}$ digits:
- 2.2.1 For power of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.

Example: AW=10W FW=15W

- 2.2.2 For power rating between 20 watt to 99 watt, the 5^{th} and the 6^{th} digits will show the whole numbers of the power rating itself. Example: $20=20 \text{W} \ 30=30 \text{W} \ 40=40 \text{W}$
- 2.3 The 7^{th} digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm5\%$ $K=\pm10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.

Example: W12J=1.2 Ω W120=12 Ω P273=27K Ω

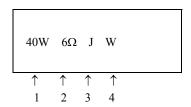

- 2.5 The 12th, 13th & 14th digits.
- $2.5.1\ \text{The}\ 12^{\text{th}}$ digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product

3. Ordering Procedure

(Example: PRTA 40W $\pm 5\%$ 6 Ω B/B)



4. Marking

Example:

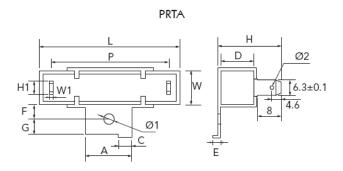
Code description and regulation:

1. Wattage Rating

2. Nominal Resistance Value

3. Resistance Tolerance. J: ± 5%

K: ± 10%


4. Pattern:

M: Power filmW: Wire wound

Color of marking: Black Ink

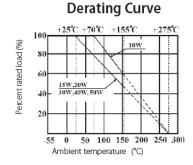
Note: The marking code shall be prevailed in kind!

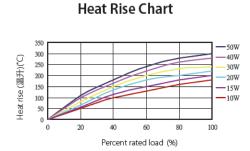
5. Ratings & Dimension

5.1 Dimension (mm):

Type Dimension	PRTA 10W	PRTA 15W	PRTA 20W	PRTA 30W	PRTA 40W	PRTA 50W
W±1.0mm	10	12.5	12.5	19	19	19
D±1.0mm	9	11.5	13.5	19	19	19
L±1.5mm	48	48	63	75	90	90
P±1.0mm	32	32	44	54	70	70
H±1.0mm	19	23.5	25	30	30	30
A±0.5mm	12	12	12	18	18	18
H1±0.4mm	8.0	7.6	7.6	7.6	8.0	8.0
C±0.5mm	3	3	3	3	3	3
F±0.5mm	8.7	8.0	10	9.5	9.5	9.5
G±0.5mm	5	6	6	7.5	7.5	7.5
E±1.0mm	3	3	3	4	4	4
Ø1±0.2mm	4.1	4.1	4.1	6.0	6.0	6.0
Ø2±0.2mm	1.6	1.6	1.6	1.6	1.6	1.6
W1±0.08mm	0.8	0.8	0.8	0.8	0.8	0.8

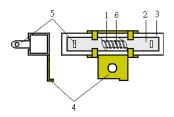
5.2 Resistance Range:

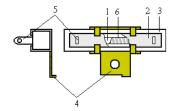

Type	PRTA 10W	PRTA 15W	PRTA 20W	PRTA 30W	PRTA 40W	PRTA 50W
Wire-wound	1Ω~820Ω	1Ω~1ΚΩ	2Ω~1.2ΚΩ	3Ω~1.5ΚΩ	6Ω~1.5ΚΩ	6Ω~1.5ΚΩ
Power Film	821Ω~200ΚΩ	1.1ΚΩ~200ΚΩ	1.3ΚΩ~200ΚΩ	/	/	/



6. Derating Curve

6.1 Voltage rating:


Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:


$$RCWV = \sqrt{P \times R}$$

Where: RCWV = rated dc or RMS ac continuous working voltage at commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

7. Structure

No.	Name	Material Generic Name	
1	Body	Al_2O_3	
2	Filling materials	SiO ₂	
3	Ceramic case	Al ₂ O ₃ CaO	
4	Bracket	Iron	
5	Terminal lug	Steel(tin plated iron surface)	
6	Resistance element	Power Film: Metal Oxide Film	
	Resistance element	Wire-Wound: Alloy Wire	

8. Performance Specification

Characteristic Limits		Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)		
Temperature Coefficient	≥ 20Ω: ±350PPM/°C max < 20Ω: ±400PPM/°C max	$ \begin{array}{c} 4.8 \text{ Natural resistance changes per temp. Degree centigrade} \\ \hline \frac{R_2\text{-}R_1}{R_1(t_2\text{-}t_1)} \times 10^6 (\text{PPM/}^{\circ}\text{C}) \\ \hline R_1: \text{ Resistance Value at room temperature } (t_1) \; ; \\ R_2: \text{ Resistance at test temperature } (t_2) \\ \hline t_{1:} +25^{\circ}\text{C or specified room temperature} \\ \hline t_{2:} \text{ Test temperature } (\text{-}55^{\circ}\text{C}\text{or }125^{\circ}\text{C}) \\ \end{array} $		
Short-time overload	Resistance change rate is: $\pm (5\%+0.05\Omega)$ Max. With no evidence of	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever		
	mechanical damage.	less for 5 seconds.		

Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90°metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds for cement fixed resistors the testing voltage is 1000V.
Terminal strength	No evidence of mechanical damage	4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Resistance to soldering heat	Resistance change rate is: $\pm (1\% + 0.05\Omega) \text{ Max. With no evidence of}$ mechanical damage	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in 260°C±5°c solder for 10±1 seconds.
Solderability	95% coverage Min.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder: 245 °C ± 3 °C Dwell time in solder: 2~3 seconds.
Humidity (Steady state)	Resistance change rate is: $\pm (5\% + 0.05\Omega)$ Max. With no evidence of mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90~95%RH relative humidity
Load life in humidity	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\geq 100 K\Omega \Delta R/R$: $\pm 10\%$	7.9 Resistance change after 1000 hours (1.5 hours "ON" , 0.5 hours "OFF") at RCWV or Max. Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.
Load life	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}\text{C}$ or $70\pm2^{\circ}\text{C}$ ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100K\Omega \Delta R/R$: $\pm 10\%$	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: $\pm 5\%$ For Power film range: $< 100 K\Omega \Delta R/R$: $\pm 5\%$ $\ge 100 K\Omega \Delta R/R$: $\pm 10\%$	MIL-STD-202 108A Upper limit temperature , for 16H.

9. Note

- 9.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35°C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 9.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 9.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl₂, H₂S, NH₃, SO₂, NO₂, Br etc.

10. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~6	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	5	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	5	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	Modify the load life test conditions	5	Sep.27, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice