

DATA SHEET

Product Name Radial Terminal Type

Part Name PRVA Series File No. DIP-SP-040

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel	+86 512 5763 1411 / 22 /33		
Email	marketing@uni-royal.cn		
Manufacture Plant	Uniroyal Electronics Industry Co., Ltd.		
	Aeon Technology Corporation		
	Royal Electronic Factory (Thailand) Co., Ltd.		
	Royal Technology (Thailand) Co., Ltd.		

1. <u>Scope</u>

- 1.1 This datasheet is the characteristics of Radial Terminal Type-PRVA Series manufactured by UNI-ROYAL.
- 1.2 Self-Extinguishing.
- 1.3 Extremely small & sturdy mechanically safe.
- 1.4 Excellent flame & moisture resistance
- 1.5 Too low or too high values on Wire-wound & Power-film type can be supplied on a case to case basis.
- 1.6 Compliant with RoHS directive.
- 1.7 Halogen free requirement.

2. Part No. System

The standard Part No. includes 14 digits with the following explanation:

2.1 $1^{\text{th}} \sim 4^{\text{th}}$ digits

This is to indicate the Chip Resistor. Example: PRVA= Radial Terminal Type-PRVA Series

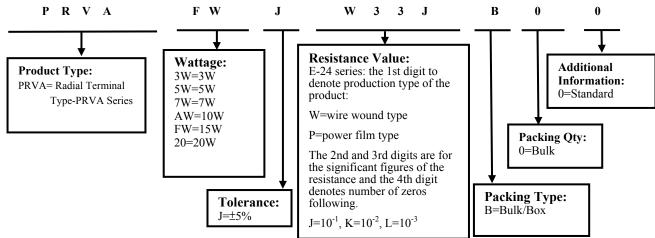
2.2 5th~6th digits:

 $1W \sim 16W (\geq 1W)$

Wattage	3	5	7	10	15
Normal Size	3W	5W	7W	AW	FW

- 2.2.1 For power rating of 1 watt to 16 watt, the 5th digit will be a number or a letter code and the 6th digit will be the letters of W.
 Example: 5W=5W
- 2.2.2 For power rating between20 watt to 99 watt, the 5th and the 6th digit will show the whole numbers of the power rating itself Example: 20=20W
- 2.3 The 7th digit is to denote the Resistance Tolerance. The following letter code is to be used for indicating the standard Resistance Tolerance. $J=\pm 5\%$ K= $\pm 10\%$
- 2.4 The 8th to 11th digits is to denote the Resistance Value.
- 2.4.1 For Cement Fixed Resistors the 8th digits will be coded with "W" or "P" to denote Wire-wound type or Power Film type respectively of the Cement Fixed Resistor product. The 9th to 11th please refer to point a) of item 4.
 - Example:

W12J=1.2Ω W121=120Ω P503=50KΩ

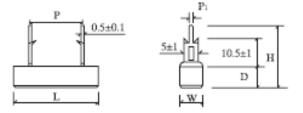

- 2.5 The 12th, 13th & 14th digits.
- 2.5.1 The 12th digit is to denote the Packaging Type with the following codes:

B=Bulk/Box

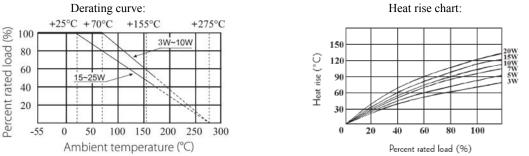
- 2.5.2 The 13th digit is normally to indicate the Packing Quantity, This digit should be filled with "0" for the Cement products with "Bulk/Box" packing requirements.
- 2.5.3 For some items, the 14th digit alone can use to denote special features of additional information with the following codes or standard product Example: 0= standard product


3. Ordering Procedure

(Example: PRVA 15W ±5% 3.3Ω B/B)



4. <u>Marking</u>


Code description and regulation:					
1. Wattage Rating					
2. Nominal Resistance Value					
3. Resistance Tolerance. J: \pm 5% ; K: \pm 10%					
4. Pattern:					
M: Power film					
W: Wire wound					
Color of marking: Black Ink					
Note: The marking code shall be prevailed in kind!					

5. Dimension

Туре	Dimension(mm)					Resistance Range		
	W±1	D±1	L±1	P±1	P1±0.2	H±1	Wire Wound	Power Film
PRVA 3W	10	9	22	9.5	1.3	25	0.1Ω-47Ω	48Ω-150ΚΩ
PRVA 5W	10	9	27/25	15/9.5	1.3	25	0.1Ω-120Ω	121Ω-200ΚΩ
PRVA 7W	10	9	35	22	1.3	25	0.1Ω-560Ω	561Ω-200ΚΩ
PRVA 10W	10	9	48	35/32	1.3	25	1Ω-820Ω	821Ω-200ΚΩ
PRVA 15W	12.5	11.5	48	32	1.5	24	1Ω-1ΚΩ	1.1ΚΩ-200ΚΩ
PRVA 20W	12.5	13.5	63	42	1.5	26	1Ω-1.2ΚΩ	1.3KΩ-200KΩ

6. Derating Curve

6.1 Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternatingcurrent (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

 $RCWV = \sqrt{P \times R}$

Where: RCWV = rated dc or RMS ac continuous working voltage at

commercial-line frequency and waveform (VOLT.)

P = power rating (WATT.) R= nominal resistance (OHM)

7. <u>Performance Specification</u>

Characteristic	Limits	Test Methods (GB/T5729&JIS-C-5201&IEC60115-1)
Temperature Coefficient	≥ 20Ω: ±350PPM/°C <20Ω: ±400PPM/°C	4.8 Natural resistance changes per temp. Degree centigrade $\frac{R_2-R_1}{\dots} \times 10^6 (PPM/^{\circ}C)$ $R_1(t_2-t_1)$ $R_1: Resistance Value at room temperature (t_1);$ $R_2: Resistance at test temperature (t_2)$ $t_1: +25^{\circ}C \text{ or specified room temperature}$ $t_2: Test temperature (-55^{\circ}C \text{ or } 125^{\circ}C)$
Short-time overload	Resistance change rate must be in $\pm (5\%+0.05\Omega)$, and no mechanical damage.	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max.Overload Votage whichever less for 5 seconds.
Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation break down.	4.7 Resistors shall be clamped in the trough of a 90° metallic V-block and shall be tested at AC potential respectively specified in the above list for 60-70 seconds for cement fixed resistors the testing voltage is 1000V.
Resistance to soldering heat	Resistance change rate must be in \pm (1%+0.05 Ω), and no mechanical damage.	4.18 Permanent resistance change when leads immersed to a point 2.0-2.5mm from the body in $260^{\circ}C\pm5^{\circ}C$ solder for 10 ± 1 seconds.
Solderability	95% coverage Min.	 4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Test temp. Of solder:245 °C±3 °C Dwell time in solder: 2~3seconds.
Terminal strength	No evidence of mechanical damage	 4.16 Direct load: Resistance to a 2.5 kg direct load for 10 seconds in the direction of the longitudinal axis of the terminal leads. Twist test: Terminal leads shall be bent through 90°at a point of about 6mm from the body of the resistor and shall be rotated through 360° about the original axis of the bent terminal in alternating direction for a total of 3 rotations.
Humidity (Steady state)	Resistance change rate must be in $\pm(5\%+0.05\Omega)$, and no mechanical damage.	4.24 Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2℃ and 90~95%RH relative humidity
Load life in humidity	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	7.9 Resistance change after 1000 hours (1.5 hours "ON" · 0.5 hours "OFF") at RCWV or Max.Working Voltage whichever less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.
Load life	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON", 0.5 hour "OFF" at $25\pm2^{\circ}$ C or $70\pm2^{\circ}$ C ambient.
Low Temperature Storage	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	IEC 60068-2-1 (Aa) Lower limit temperature , for 2H.
High Temperature Exposure	For Wire-wound: $\Delta R/R$: ±5% For Power film range: $< 100 K\Omega \Delta R/R$: ±5% $\ge 100 K\Omega \Delta R/R$: ±10%	MIL-STD-202 108A Upper limit temperature , for 16H.

8. <u>Note</u>

0 D

.

- 8.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to 35 °C under humidity between 25 to 75%RH. Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.
- 8.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 8.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.
 - c. Exposed to sea wind or corrosive gases, such as Cl_2 , H_2S , NH_3 , SO_2 , NO_2 , Br etc.

9. <u>Record</u>	-				
Version	Description	Page	Date	Amended by	Checked by
1	First version	1~5	Mar.20, 2018	Haiyan Chen	Nana Chen
2	Modify characteristic	4~5	Feb.26, 2019	Haiyan Chen	Yuhua Xu
3	Modify characteristic	4	Nov.20,2020	Song Nie	Yuhua Xu
4	Modify the temperature coefficient test conditions	4	Nov.07, 2022	Haiyan Chen	Yuhua Xu
5	1.Modify derating curve 2.Modify the load life test conditions	3 5	Sep.27, 2024	Haiyan Chen	Yuhua Xu

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice